Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
The goal of generalized few-shot semantic segmentation (GFSS) is to recognize both base- and novel-class objects at inference, using a learned base-class model and few-shot data for novel classes. An issue is catastrophic forgetting of the learned base-class model when training with the novel-class data. This paper presents the method for GFSS and theoretically derives that the method prevents catastrophic forgetting of the base-class model.
Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Miao Guo, Yong Tao Pei, et al.
WCITS 2011