Publication
AAAI/IAAI 2015
Conference paper

Propagating ranking functions on a graph: Algorithms and applications

Abstract

Learning to rank is an emerging learning task that opens up a diverse set of applications. However, most existing work focuses on learning a single ranking function whilst in many real world applications, there can be many ranking functions to fulfill various retrieval tasks on the same data set. How to train many ranking functions is challenging due to the limited availability of training data which is further compounded when plentiful training data is available for a small subset of the ranking functions. This is particularly true in settings, such as personalized ranking/retrieval, where each person requires a unique ranking function according to their preference, but only the functions of the persons who provide sufficient ratings (of objects, such as movies and music) can be well trained. To address this, we propose to construct a graph where each node corresponds to a retrieval task, and then propagate ranking functions on the graph. We illustrate the usefulness of the idea of propagating ranking functions and our method by exploring two real world applications.

Date

Publication

AAAI/IAAI 2015

Authors

Share