Publication
Philos. Trans. R. Soc. A
Review

Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic Technology

View publication

Abstract

While cadmium telluride and copper-indium- gallium-sulfide-selenide (CIGSSe) solar cells have either already surpassed (for CdTe) or reached (for CIGSSe) the 1GWyr-1 production level, highlighting the promise of these rapidly growing thin-film technologies, reliance on the heavy metal cadmium and scarce elements indium and tellurium has prompted concern about scalability towards the terawatt level. Despite recent advances in structurally related copper-zinc-tin-sulfide-selenide (CZTSSe) absorbers, in which indium from CIGSSe is replaced with more plentiful and lower cost zinc and tin, there is still a sizeable performance gap between the kesterite CZTSSe and the more mature CdTe and CIGSSe technologies. This review will discuss recent progress in the CZTSSe field, especially focusing on a direct comparison with analogous higher performing CIGSSe to probe the performance bottlenecks in Earth-abundant kesterite devices. Key limitations in the current generation of CZTSSe devices include a shortfall in open circuit voltage relative to the absorber band gap and secondarily a high series resistance, which contributes to a lower device fill factor. Understanding and addressing these performance issues should yield closer performance parity between CZTSSe and CdTe/CIGSSe absorbers and hopefully facilitate a successful launch of commercialization for the kesterite-based technology. Copyright © The Royal Society 2013.

Date

Publication

Philos. Trans. R. Soc. A

Authors

Share