Jia Cui, Yonggang Deng, et al.
ASRU 2009
We recently proposed neuro-vector-symbolic architectures (NVSA) in which high-dimensional distributed vectors are properly generated by neural nets and further processed by a VSA-informed machinery at different levels of abstraction. Using NVSA, we could set state-of-the-art accuracy record on few-shot continual learning [CVPR 2022] as well as visual abstract reasoning tasks [Nature Machine Intelligence 2023]. This is not where the advantages end: NVSA also reduces the computational complexity associated with both perceptual and reasoning tasks, yet on modern CPUs/GPUs. NVSA expanded computation-in-superposition to highly nonlinear transformations in CNNs and Transformers, effectively doubling their throughput at nearly iso-accuracy and computational cost [NeurIPS 2023]. NVSA also made probabilistic abduction tractable by avoiding exhaustive probability computations and brute-force symbolic searches which led to 244× faster inference compared with the probabilistic reasoning within the state-of-the-art approaches [Nature Machine Intelligence 2023]. Finally, NVSA permitted learning-to-reason: instead of hard-coding the rule formulations associated with a reasoning task, NVSA could transparently learn the rule formulations with just one pass through the training data [NeurIPSW Math-AI 2023].
Jia Cui, Yonggang Deng, et al.
ASRU 2009
Kun Wang, Juwei Shi, et al.
PACT 2011
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Pavel Kisilev, Daniel Freedman, et al.
ICPR 2012