Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
The Noise Sensitivity Signature (NSS), originally introduced by Grossman and Lapedes (1993), was proposed as an alternative to cross validation for selecting network complexity. In this paper, we extend NSS to the general problem of regression estimation. We also present results from regularized linear regression simulations which indicate that for problems with few data points, NSS regression estimates perform better than Generalized Cross Validation (GCV) regression estimates [7].
Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Miao Guo, Yong Tao Pei, et al.
WCITS 2011