Rangachari Anand, Kishan Mehrotra, et al.
IEEE Transactions on Neural Networks
The paper focuses on finding the m best solutions to combinatorial optimization problems using Best-First or Branch-and-Bound search. Specifically, we present m-A*, extending the well-known A* to the m-best task, and prove that all its desirable properties, including soundness, completeness and optimal efficiency, are maintained. Since Best-First algorithms have memory problems, we also extend the memory-efficient Depth-First Branch-and-Bound to the m-best task. We extend both algorithms to optimization tasks over graphical models (e.g., Weighted CSP and MPE in Bayesian networks), provide complexity analysis and an empirical evaluation. Our experiments with 5 variants of Best-First and Branch-and-Bound confirm that Best-First is largely superior when memory is available, but Branch-and-Bound is more robust, while both styles of search benefit greatly when the heuristic evaluation function has increased accuracy. Copyright © 2012, Association for the Advancement of Artificial Intelligence. All rights reserved.
Rangachari Anand, Kishan Mehrotra, et al.
IEEE Transactions on Neural Networks
Dzung Phan, Vinicius Lima
INFORMS 2023
Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
Hagen Soltau, Lidia Mangu, et al.
ASRU 2011