Bounded-diameter minimum spanning trees and related problems
Jan-Ming Ho, D.T. Lee, et al.
SCG 1989
A new method of studying self-complementary graphs, called the decomposition method, is proposed in this paper. Let G be a simple graph. The complement of G, denoted by Ḡ, is the graph in which V(Ḡ) = V(G); and for each pair of vertices u,v in Ḡ, uv ∈ G-E(Ḡ) if and only if uv ∉ E(G). G is called a self-complementary graph if G and Ḡ are isomorphic. Let G be a self-complementary graph with the vertex set V(G)={v1v2,...,v4n}, where dG(v1)≤dG(v2)≤⋯ ≤dG(v4n). Let H = G[v1v2,...,v2n], H′ = G[v2n+1, V2n+2,...,v4n] and H* = G - E(H) - E(H′). Then G = H + H′ + H* is called the decomposition of the self-complementary graph G. In part I of this paper, the fundamental properties of the three subgraphs H, H′ and H* of the self-complementary graph G are considered in detail at first. Then the method and steps of constructing self-complementary graphs are given. In part II these results will be used to study certain Ramsey number problems (see (II)). © 2000 Elsevier Science B.V. All rights reserved.
Jan-Ming Ho, D.T. Lee, et al.
SCG 1989
D.T. Lee, C.D. Yang, et al.
International Journal of Computational Geometry and Applications
M. Sarrafzadeh, C.K. Wong
IEEE TC
J. Cong, A. Kahng, et al.
ISCAS 1992