Publication
Scientific Reports
Paper

Seven neurons memorizing sequences of alphabetical images via spike-timing dependent plasticity

Download paper

Abstract

An artificial neural network, such as a Boltzmann machine, can be trained with the Hebb rule so that it stores static patterns and retrieves a particular pattern when an associated cue is presented to it. Such a network, however, cannot effectively deal with dynamic patterns in the manner of living creatures. Here, we design a dynamic Boltzmann machine (DyBM) and a learning rule that has some of the properties of spike-timing dependent plasticity (STDP), which has been postulated for biological neural networks. We train a DyBM consisting of only seven neurons in a way that it memorizes the sequence of the bitmap patterns in an alphabetical image "SCIENCE" and its reverse sequence and retrieves either sequence when a partial sequence is presented as a cue. The DyBM is to STDP as the Boltzmann machine is to the Hebb rule.

Date

Publication

Scientific Reports

Authors

Resources

Share