Publication
IEEE Trans. Inf. Theory
Paper
Sliding Block Codes Between Constrained Systems
Abstract
The work of Karabed and Marcus on constructing finite-state codes between constrained systems called sofic systems is continued. It is shown that if Σ is a shift of finite type and S is a sofic system with k/n=h(s)/h(Σ) where h denotes entropy, there is a noncatastrophic finite-state invertible code from Σ to S at rate k : n if: 1) Σ and S satisfy a certain algebraic condition involving dimension groups, and 2) Σ and S satisfy a certain condition on their periodic point. Moreover, if S is an almost finite type sofic system then the decoder can be sliding block. © 1993, IEEE. All rights reserved.