Publication
ICLR 2018
Conference paper

Sufisent - Universal sentence representations using suffix encodings

Abstract

Computing universal distributed representations of sentences is a fundamental task in natural language processing. We propose a method to learn such representations by encoding the suffixes of word sequences in a sentence and training on the Stanford Natural Language Inference (SNLI) dataset. We demonstrate the effectiveness of our approach by evaluating it on the SentEval benchmark, improving on existing approaches on several transfer tasks.

Date

Publication

ICLR 2018

Authors

Share