J. Köhler, J.A.J.M. Disselhorst, et al.
Nature
One- and two-color persistent spectral hole-burning properties of the electron donor-acceptor system meso-tetra-p-tolyl-Zn-tetrabenzoporphyrin/chlo in poly(methylmethacrylate) are examined versus temperature from 1.5 to 90 K. The efficiency for photon-gated (two-color) hole-burning is independent of temperature, while the one-color hole-burning efficiency decreases as the temperature is raised from 1.5 K. Raising the temperature improves the gating ratio (ratio of two- to one-color hole-burning efficiencies) from 102 at 1.5 K to 104 at 90 K. The low-power, short-burn-time hole width is also measured from 1.5 to 90 K and is found to have a T2.17±0.07 power law behavior. © 1990.
J. Köhler, J.A.J.M. Disselhorst, et al.
Nature
Cecilia A. Walsh, W.E. Moerner
Journal of the Optical Society of America B: Optical Physics
P. Pokrowsky, W.E. Moerner, et al.
Proceedings of SPIE 1989
Stephen Ducharme, J.C. Scott, et al.
Physical Review Letters