PSBD: Prediction Shift Uncertainty Unlocks Backdoor Detection
Wei Li, Pin-Yu Chen, et al.
CVPR 2025
Large-scale foundation models in Earth Observation can learn versatile, label-efficient representations by leveraging massive amounts of unlabeled data. However, existing public datasets are often limited in scale, geographic coverage, or sensor variety. We introduce TerraMesh, a new globally diverse, multimodal dataset combining optical, synthetic aperture radar, elevation, and land-cover modalities in an Analysis-Ready Data format. TerraMesh includes over 9 million samples with eight spatiotemporal aligned modalities, enabling large-scale pre-training and fostering robust cross-modal correlation learning. The dataset spans nearly all terrestrial ecosystems and is stored with Zarr to facilitate efficient, HPC-friendly loading at scale. We provide detailed data processing steps, comprehensive statistics, and empirical evidence demonstrating improved model performance when pre-trained on TerraMesh. The dataset will be made publicly available with a permissive license.
Wei Li, Pin-Yu Chen, et al.
CVPR 2025
Dzung Phan, Vinicius Lima
INFORMS 2023
Jehanzeb Mirza, Leonid Karlinsky, et al.
NeurIPS 2023
Hagen Soltau, Lidia Mangu, et al.
ASRU 2011