Ahmed M. Assaf, Alan Hartman, et al.
Discrete Mathematics
A Steiner quadruple system of order v is a set X of cardinality v, and a set Q, of 4-subsets of X, called blocks, with the property that every 3-subset of X is contained in a unique block. A Steiner quadruple system is resolvable if Q can be partitioned into parallel classes (partitions of X). A necessary condition for the existence of a resolvable Steiner quadruple system is that v≡4 or 8 (mod 12). In this paper we show that this condition is also sufficient for all values of v, with 24 possible exceptions. © 1987.
Ahmed M. Assaf, Alan Hartman, et al.
Discrete Mathematics
Alan Hartman, Dean G. Hoffman
European Journal of Combinatorics
Ahmed M. Assaf, Alan Hartman
Discrete Mathematics
Alan Hartman, Kenneth Nagin
UML Satellite Activities 2004