Conference paper
Towards automatic phonetic segmentation for TTS
Abstract
Phonetic segmentation is an important step in the development of a concatenative TTS voice. This paper introduces a segmentation process consisting of two phases. First, forced alignment is performed using an HMM-GMM model. The resulting segmentation is then locally refined using an SVM based boundary model. Both the models are derived from multi-speaker data using a speaker adaptive training procedure. Evaluation results are obtained on the TIMIT corpus and on a proprietary single-speaker TTS corpus. © 2012 IEEE.
Related
Conference paper
Neural TTS Voice Conversion
Conference paper