Water quality monitoring with online change-point detection methods
Abstract
We develop an approach for water quality time series monitoring and contamination event detection. The approach combines affine projection algorithms and an autoregressive (AR) model to predict water quality time series. Then, we apply online change-point detection methods to the estimated residuals to determine the presence, or not, of contamination events. Particularly, we compare the performance of four change-point detection methods, namely, sequential probability ratio test (SPRT), cumulative sum (CUSUM), binomial event discriminator (BED), and online Bayesian change-point detection (OBCPD), by using residuals obtained from four water quality time series, chlorine, conductivity, total organic carbon, and turbidity. Our fundamental criterion for the performance evaluation of the four change-point detection methods is given by the receiver operating characteristic (ROC) curve which is characterized by the true positive rate as a function of the false positive rate. We highlight with detailed experiments that OBCPD provides the best performance for large contamination events, and we also provide insight on the choice of change-point detection algorithms to consider for designing efficient contamination detection schemes.