Puzzle
5 minute read

Ponder This Challenge - October 2024 - Splitting a number

This puzzle was suggested by Karl Heinz Hofmann - thanks!

We are looking for a natural number X satisfying the following properties of its decimal representation:

  1. All the digits {1,2,3,4,6,7,8,9}\{1,2,3,4,6,7,8,9\} appear at least once, but {0,5}\{0, 5\} do not appear at all.

  2. X can be written as a front part A and back part B, such that if X were a string, it could be written as A concatenated with B, such that

  3. B is the product of the digits of X.

  4. X is a multiple of B.

  5. B is a perfect square.

For example, X=3411296X=3411296 has the property that its digit product is 12961296 so it can be split into A=341A=341 and B=1296B=1296 such that properties 2.1 and 2.3 are satisfied. However, none of the other properties are satisfied in this case since XX is missing the digits 7,87,8 and is not a multiple of BB.

Your goal: Find the least number X satisfying the above properties.

A bonus "*" will be given for finding the least number X satisfying the above properties except property 2.3 which is replaced by a new property: 2.3 The digit product of A is a perfect cube.


We will post the names of those who submit a correct, original solution! If you don't want your name posted then please include such a statement in your submission!

We invite visitors to our website to submit an elegant solution. Send your submission to the ponder@il.ibm.com.

If you have any problems you think we might enjoy, please send them in. All replies should be sent to: ponder@il.ibm.com

Solution

  • October 2024 Solution:

    The numerical solutions are

    X = 1817198712146313216, A = 1817198712, B = 146313216
    X = 8419411123272236924928, A = 84194111232, B = 72236924928
    

    The solution is based on a search, which can be optimized in various ways. We give the method described by Alex Izvalov (thanks, Alex!):

    We'll use several tactics to reduce the field of search.- As the number XX should contain all the digits 1,2,3,4,6,7,8,91,2,3,4,6,7,8,9 at least once, and BB is the product of digits of XX, then B=2a+73b+47c+1B = 2^{a+7}\cdot3^{b+4}\cdot7^{c+1} If BB is a perfect square, then it should be in the form: B=22a+832b+472c+2B = 2^{2a+8}\cdot3^{2b+4}\cdot7^{2c+2}, where a,b,ca,b,c are natural numbers

    • To search for BB in the (almost) increasing order we'll loop through the sum of a,b,c,s=a+b+ca,b,c, s = a+b+c and then we'll loop a from 00 to s,bs, b from 00 to sas-a, and then c=sabc = s-a-b
    • Next we should check if BB contains digits 00 or 5,5, and we'll proceed to the next cycle iteration in this case
    • As XX is a multiple of BB, then (let mm be the length of BB) A10m+BA\cdot 10^{m}+B is a multiple of BB, then prime factoring of AA should have as many 3s and 7s as BB has, and the number of 2s should be not less than the number of 2s in BB minus the length of BB. We'll call the minimal number consisting of these prime factors, A0A_0
    • As now we know the product of digits of XX, and we know BB, we'll know the product of digits of AA, too (and for the advanced problem we can break the loop early if it's not a perfect cube).

    Then we can proceed in 2 directions: either search for AA as a multiple of A0qA_0\cdot q and loop through qq and then check the digits, or construct AA as a number of gradually increasing length which product of numbers should be equal to Bprod(B)\frac{B}{\text{prod}(B)}, and then check if it's a multiple of A0A_0.

    I found the first, more straightforward way, easier to use when searching for the candidates for the minimal X, and the second way to prove that the results are indeed minimal.

Solvers

  • *Bertram Felgenhauer (30/9/2024 4:40 PM IDT)
  • *Lazar Ilic (30/9/2024 5:38 PM IDT)
  • Paul Revenant (30/9/2024 6:07 PM IDT)
  • *King Pig (30/9/2024 10:47 PM IDT)
  • *Andreas Stiller (1/10/2024 3:21 AM IDT)
  • Alex Fleischer (1/10/2024 8:47 AM IDT)
  • Yi Jiang (1/10/2024 3:23 PM IDT)
  • *Griffin Pinney (1/10/2024 4:09 PM IDT)
  • *Guglielmo Sanchini (1/10/2024 5:17 PM IDT)
  • John Tromp (1/10/2024 5:47 PM IDT)
  • *Yan-Wu He (2/10/2024 4:36 AM IDT)
  • *Robin Guilliou (2/10/2024 2:24 PM IDT)
  • *Latchezar Christov (2/10/2024 3:07 PM IDT)
  • *Daniel Bitin (2/10/2024 5:32 PM IDT)
  • *Lawrence Au (2/10/2024 8:01 PM IDT)
  • *Hugo Pfoertner (2/10/2024 8:31 PM IDT)
  • Loukas Sidiropoulos (3/10/2024 3:02 AM IDT)
  • *Sanandan Swaminathan (3/10/2024 2:10 PM IDT)
  • *Daniel Chong Jyh Tar (3/10/2024 5:41 PM IDT)
  • Reiner Martin (3/10/2024 10:52 PM IDT)
  • *Maksym Voznyy (3/10/2024 11:21 PM IDT)
  • *Lorenz Reichel (4/10/2024 5:44 PM IDT)
  • Axel Amestoy (5/10/2024 3:48 PM IDT)
  • *Harald Bögeholz (5/10/2024 7:38 PM IDT)
  • William Han (5/10/2024 7:53 PM IDT)
  • Rudy Cortembert (6/10/2024 11:29 AM IDT)
  • *Alex Izvalov (6/10/2024 5:39 PM IDT)
  • Guillaume Escamocher (6/10/2024 6:18 PM IDT)
  • Sri Mallikarjun J (7/10/2024 5:26 AM IDT)
  • *Juergen Koehl (7/10/2024 9:24 AM IDT)
  • *Arthur Vause (7/10/2024 2:09 PM IDT)
  • *Paul Lupascu (7/10/2024 4:20 PM IDT)
  • Amos Guler (7/10/2024 6:34 PM IDT)
  • *Radu-Alexandru Todor (8/10/2024 1:55 AM IDT)
  • Stéphane Higueret (8/10/2024 4:36 PM IDT)
  • *Martin Thorne (8/10/2024 9:01 PM IDT)
  • Paul Shaw (8/10/2024 10:51 PM IDT)
  • *Adrian Neacsu (8/10/2024 11:06 PM IDT)
  • *Károly Csalogány (9/10/2024 12:03 PM IDT)
  • *David Greer (10/10/2024 6:40 PM IDT)
  • *Victor Chang (11/10/2024 12:37 AM IDT)
  • Guangxi Liu (11/10/2024 7:26 AM IDT)
  • *Ankit Aggarwal (11/10/2024 2:49 PM IDT)
  • *Asaf Zimmerman (11/10/2024 5:01 PM IDT)
  • Ashfaque Shaikh (11/10/2024 6:48 PM IDT)
  • Piyush Agrawal (12/10/2024 6:04 AM IDT)
  • Gary M. Gerken (12/10/2024 6:30 PM IDT)
  • Jason Kim (12/10/2024 8:59 PM IDT)
  • *Shouky Dan & Tamir Ganor (13/10/2024 9:28 AM IDT)
  • Joaquim Carrapa (13/10/2024 1:06 PM IDT)
  • *Stephen Ebert & Matthew Lee (15/10/2024 12:10 AM IDT)
  • Terry Lee (15/10/2024 3:45 AM IDT)
  • *Hadwin Jenkins (15/10/2024 11:37 AM IDT)
  • Dieter Beckerle (16/10/2024 1:23 PM IDT)
  • *Alper Halbutogullari (16/10/2024 1:32 PM IDT)
  • Michael Liepelt (16/10/2024 9:54 PM IDT)
  • Diana Gornea (17/10/2024 2:33 PM IDT)
  • *Vladimir Volevich (18/10/2024 2:18 PM IDT)
  • Yunkyu (James) Lee (19/10/2024 5:04 PM IDT)
  • Suyeong Hahn (19/10/2024 7:53 PM IDT)
  • Divy Soni (19/10/2024 8:09 PM IDT)
  • *Marco Bellocchi (20/10/2024 1:53 AM IDT)
  • Shirish Chinchalkar (21/10/2024 6:41 AM IDT)
  • Michael Oosterhagen (21/10/2024 11:26 AM IDT)
  • *Kang Jin Cho (21/10/2024 7:54 PM IDT)
  • *Erik Wünstel (21/10/2024 10:40 PM IDT)
  • *Mihai Stancu (22/10/2024 1:49 PM IDT)
  • *Nyles Heise (22/10/2024 11:07 PM IDT)
  • Benjamin Buhrow (23/10/2024 1:04 AM IDT)
  • John Spurgeon and Kipp Johnson (23/10/2024 5:41 AM IDT)
  • Stefan Wirth (26/10/2024 4:44 AM IDT)
  • Ken Dsouza (27/10/2024 10:48 AM IDT)
  • Frank Schoeps (27/10/2024 3:15 PM IDT)
  • *Franciraldo Cavalcante (28/10/2024 7:41 AM IDT)
  • *Dan Dima (28/10/2024 12:13 PM IDT)
  • *Justin Snopek (29/10/2024 12:38 AM IDT)
  • Benjamin Cha (29/10/2024 1:05 AM IDT)
  • *Motty Porat (29/10/2024 3:00 PM IDT)
  • *Davide Colì (30/10/2024 2:07 AM IDT)
  • Evan Semet (30/10/2024 6:25 AM IDT)
  • Ido Meisner (30/10/2024 5:53 PM IDT)
  • Harshit Kothari (31/10/2024 1:09 AM IDT)
  • Tim Walters (31/10/2024 12:06 PM IDT)
  • *David F.H. Dunkley (31/10/2024 12:24 PM IDT)
  • Alfred Reich (31/10/2024 6:20 PM IDT)
  • Chris Shannon (31/10/2024 7:46 PM IDT)
  • Maths ForFun2 (31/10/2024 11:57 PM IDT)
  • Blaine Hill (1/11/2024 9:01 PM IDT)
  • *Andrea Andenna (2/11/2024 1:20 PM IDT)
  • Julian Ma (2/11/2024 2:27 PM IDT)
  • Oscar Volpatti (2/11/2024 8:14 PM IDT)

Related posts