Puzzle
6 minute read

Ponder This Challenge - September 2024 - Sibling triangles

This riddle was suggested by Latchezar Christov - thanks Latchezar!

We will call two triangles "sibling pairs" if they are two non-identical triangles with integer side lengths respectively (a,b,c1)(a,b,c_1) and (a,b,c2)(a,b,c_2), where c1andc2c_1 and c_2 are the only side of each triangle with a different length from the other triangle, since there are two common side lengths a,ba,b **and** both triangles must have a common nonzero area.

An example is the pair of triangles with side lengths (5,5,6)(5,5,6) and (5,5,8)(5,5,8). The area of both is 12. Another example is (7,4,7)(7,4,7) and (7,4,9)(7,4,9) with area 180\sqrt{180}.

For some aa and bb, there may not be any sibling pair at all (e.g., a=3a=3 and b=2b=2) and for some, there may be more than one. For example, if a=24a=24 and b=23b=23, three sibling pairs exist with the following side lengths:

  • (24,23,19)(24,23,19) and (24,23,43)(24,23,43), area = 41580\sqrt{41580}
  • (24,23,23)(24,23,23) and (24,23,41)(24,23,41), area = 55440\sqrt{55440}
  • (24,23,29)(24,23,29) and (24,23,37)(24,23,37), area = 71820\sqrt{71820}

Your goal: Find two integers a,ba,b such that a>ba>b and there are **exactly** 50 sibling pairs with common side lengths aa and bb.

**A bonus** "*" will be given for solving the above problem with the additional constraint that at least two of those 50 sibling pairs must have **integer** areas. The areas of the remaining pairs may be irrational.

Solution

  • September 2024 Solution:

    A solution to the main problem is a,b=65909,57052a,b=65909,57052

    A solution to the bonus is a,b=11102305,3338835a,b = 11102305, 3338835

    The area of a triangle with sides a,b,c is given by Heron's formula: denote s=a+b+c2s=\frac{a+b+c}{2}, and the area AA is A=s(sa)(sb)(sc)=144a2b2(a2+b2c2)2A=\sqrt{s\left(s-a\right)\left(s-b\right)\left(s-c\right)}=\frac{1}{4}\sqrt{4a^{2}b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}}. Thus, if we want to find c1,c2c_{1},c_{2} such that the area of the triangles (a,b,c1)\left(a,b,c_{1}\right) and (a,b,c2)\left(a,b,c_{2}\right) is equal, it sufficies to satisfy the equation (a2+b2c12)=±(a2+b2c22)\left(a^{2}+b^{2}-c_{1}^{2}\right)=\pm\left(a^{2}+b^{2}-c_{2}^{2}\right). Assuming c1c2c_{1}\ne c_{2} this simplifies to 2(a2+b2)=c12+c222\left(a^{2}+b^{2}\right)=c_{1}^{2}+c_{2}^{2}, which is related to a classical problem in number theory - the representation of an integer N as the sum of two squares.

    Given N, finding such representation can be hard unless one has the factorization of N, and then one case use a recursive algorithm for finding all such representations thanks to the Brahmagupta–Fibonacci identity

    (a2+b2)(c2+d2)=(acbd)2+(ad+bc)2\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=\left(ac-bd\right)^{2}+\left(ad+bc\right)^{2}

    Which shows how to obtain a representation as sums of squares of a number N=N1N2N=N_{1}N_{2} from such representations of N1,N2N_{1},N_{2}.

    We are looking for solutions to to the equation 2N=c12+c222N=c_{1}^{2}+c_{2}^{2} where N=a2+b2N=a^{2}+b^{2}. However, not every (c1,c2)\left(c_{1},c_{2}\right) which satisfy the equation lead to a triangle, since the area might turn out to be zero or negative: we need to have aba-b, assuming a>ba>b. We proceed as follows, given some N=p1r1pkrkN=p_{1}^{r_{1}}\cdots p_{k}^{r_{k}}:

    1. Compute the list of all (a,b)\left(a,b\right) such that N=a2+b2N=a^{2}+b^{2}
    2. Compute the list of all (c1,c2)\left(c_{1},c_{2}\right) such that 2N=c12+c222N=c_{1}^{2}+c_{2}^{2}
    3. Check whether there are (a,b)\left(a,b\right) such that exactly 50 pairs (c1,c2)\left(c_{1},c_{2}\right) satisfy ab<1<a+ba-b<_{1}<a+b(for the bonus: also check whether we have at least two integer areas).

    To solve the problem, one iterates on various values of N=p1r1pkrkN=p_{1}^{r_{1}}\cdots p_{k}^{r_{k}}. It is best to look at the first few primes congruent to 1 modulo 4, since product of such primes is guaranteed to be representable as sum of squares. The relatively small solution (a,b)=(433316,384137)\left(a,b\right)=\left(433316,384137\right) can be found using N=55135172N=5^{5}\cdot13^{5}\cdot17^{2} (where 5,13,17 are the first primes congruent to 1 modulo 4). The even smaller solution (65909,57052)\left(65909,57052\right) is obtained by considering two more primes: N=513217229237N=5\cdot13^{2}\cdot17^{2}\cdot29^{2}\cdot37.

    Finding solution to the basic problem is extremely quick given efficient implementations for steps 1-3, but finding a solution to the bonus can still be difficult.

Solvers

  • Lazar Ilic (29/8/2024 3:42 PM IDT)
  • *King Pig (30/8/2024 2:17 AM IDT)
  • Daniel Chong Jyh Tar (30/8/2024 2:26 AM IDT)
  • *Bertram Felgenhauer (30/8/2024 3:44 AM IDT)
  • Alper Halbutogullari (30/8/2024 5:03 AM IDT)
  • Lorenz Reichel (30/8/2024 1:27 PM IDT)
  • Alex Fleischer (30/8/2024 3:34 PM IDT)
  • *Sanandan Swaminathan (30/8/2024 8:32 PM IDT)
  • John Tromp (30/8/2024 10:07 PM IDT)
  • *Bert Dobbelaere (31/8/2024 12:55 AM IDT)
  • Julian Ma (31/8/2024 4:03 AM IDT)
  • Dan Dima (31/8/2024 9:17 AM IDT)
  • Loukas Sidiropoulos (31/8/2024 11:21 AM IDT)
  • Yi Jiang (31/8/2024 1:36 PM IDT)
  • Viplov Jain (31/8/2024 4:27 PM IDT)
  • Paul Lupascu (31/8/2024 5:39 PM IDT)
  • John Spurgeon (31/8/2024 7:21 PM IDT)
  • *Victor Chang (31/8/2024 8:09 PM IDT)
  • Kipp Johnson (1/9/2024 3:02 PM IDT)
  • Harald Bögeholz (1/9/2024 3:16 PM IDT)
  • Gary M. Gerken (1/9/2024 5:15 PM IDT)
  • *Yan-Wu He (1/9/2024 6:56 PM IDT)
  • *Hugo Pfoertner (2/9/2024 12:35 AM IDT)
  • Marco Bellocchi (2/9/2024 1:41 AM IDT)
  • Shirish Chinchalkar (2/9/2024 2:32 AM IDT)
  • Jawher Jandoubi (2/9/2024 2:42 AM IDT)
  • Richard Gosiorovsky (2/9/2024 9:14 AM IDT)
  • Andreas Knüpfer (2/9/2024 9:28 AM IDT)
  • Jiri Spitalsky (2/9/2024 11:34 AM IDT)
  • *Guangxi Liu (2/9/2024 1:10 PM IDT)
  • Reiner Martin (2/9/2024 2:37 PM IDT)
  • Dan Ismailescu (2/9/2024 6:54 PM IDT)
  • *Daniel Bitin (2/9/2024 11:49 PM IDT)
  • Michael Liepelt (3/9/2024 8:27 AM IDT)
  • *Frederick Vu (3/9/2024 11:40 AM IDT)
  • Sri Mallikarjun J (3/9/2024 4:20 PM IDT)
  • Juergen Koehl (3/9/2024 9:55 PM IDT)
  • Guglielmo Sanchini (3/9/2024 10:08 PM IDT)
  • Robin Guilliou (4/9/2024 4:03 PM IDT)
  • Arthur Vause (4/9/2024 7:26 PM IDT)
  • *Lawrence Au (4/9/2024 8:06 PM IDT)
  • Janko Sustersic (4/9/2024 8:40 PM IDT)
  • Adrian Neacsu (5/9/2024 1:07 AM IDT)
  • Fabio Michele Negroni (5/9/2024 1:57 PM IDT)
  • Piyush Agrawal (5/9/2024 3:23 PM IDT)
  • Jesse Rearick (6/9/2024 9:22 AM IDT)
  • Thomas Egense (6/9/2024 10:07 AM IDT)
  • *Vladimir Volevich (7/9/2024 12:24 AM IDT)
  • *Andrea Andenna (7/9/2024 12:34 AM IDT)
  • *Mark Beyleveld (7/9/2024 4:40 PM IDT)
  • Alex Izvalov (7/9/2024 5:30 PM IDT)
  • Reda Kebbaj (8/9/2024 4:33 AM IDT)
  • *Radu-Alexandru Todor (8/9/2024 2:06 PM IDT)
  • Maksym Voznyy (9/9/2024 1:54 AM IDT)
  • Ashfaque Shaikh (9/9/2024 5:54 PM IDT)
  • Amos Guler (9/9/2024 9:45 PM IDT)
  • *Martin Thorne (9/9/2024 9:49 PM IDT)
  • Gyozo Nagy (9/9/2024 10:08 PM IDT)
  • Jared Kittleson (9/9/2024 10:16 PM IDT)
  • *Karl-Heinz Hofmann (10/9/2024 11:09 AM IDT)
  • Mathias Schenker (10/9/2024 1:53 PM IDT)
  • Joaquim Carrapa (11/9/2024 1:30 AM IDT)
  • Karl D'Souza (11/9/2024 2:40 AM IDT)
  • *Dieter Beckerle (13/9/2024 11:18 AM IDT)
  • Nadir S. (13/9/2024 12:09 PM IDT)
  • Rudy Cortembert (14/9/2024 12:48 AM IDT)
  • Fakih Karademir (14/9/2024 2:15 AM IDT)
  • *Stephen Ebert and Matthew Lee (14/9/2024 8:28 AM IDT)
  • Kang Jin Cho (14/9/2024 11:41 AM IDT)
  • *Vincent Picaud (15/9/2024 3:21 PM IDT)
  • *Sanjay Rao (16/9/2024 1:06 PM IDT)
  • Sachal Mahajan (17/9/2024 3:35 AM IDT)
  • Tamir Ganor & Shouky Dan (19/9/2024 9:40 AM IDT)
  • Serge Batalov (19/9/2024 2:07 PM IDT)
  • Guillaume Escamocher (20/9/2024 5:57 PM IDT)
  • Hakan Summakoğlu (21/9/2024 3:21 PM IDT)
  • Ido Meisner (22/9/2024 9:44 PM IDT)
  • *David F.H. Dunkley (23/9/2024 1:22 AM IDT)
  • Franciraldo Cavalcante (23/9/2024 1:57 PM IDT)
  • *David Greer (23/9/2024 11:43 PM IDT)
  • Dan Ignatoff (24/9/2024 2:09 AM IDT)
  • Abhinav Bana (25/9/2024 9:19 AM IDT)
  • Jason Kim (25/9/2024 11:03 PM IDT)
  • Nyles Heise (25/9/2024 11:52 PM IDT)
  • Benjamin Cha (26/9/2024 12:02 AM IDT)
  • *Andreas Stiller (26/9/2024 1:42 AM IDT)
  • William Han (26/9/2024 1:57 AM IDT)
  • Evan Semet (26/9/2024 5:15 AM IDT)
  • Mark Pervovskiy (26/9/2024 1:49 PM IDT)
  • Alfred Reich (26/9/2024 4:10 PM IDT)
  • Siddharth Joshi (26/9/2024 7:22 PM IDT)
  • Tim Walters (28/9/2024 4:48 AM IDT)
  • Zoltan Haindrich (28/9/2024 12:02 PM IDT)
  • Guy Daniel Hadas (28/9/2024 4:08 PM IDT)
  • Terry Lee (28/9/2024 7:13 PM IDT)
  • Albert Stadler (29/9/2024 12:10 PM IDT)
  • Justin Snopek (29/9/2024 8:29 PM IDT)
  • Guillaume Chagneau (29/9/2024 9:59 PM IDT)
  • Matt Cristina (1/10/2024 3:55 AM IDT)
  • Kai Guttmann (1/10/2024 8:23 AM IDT)
  • Erik Wünstel (1/10/2024 12:15 PM IDT)
  • Stéphane Higueret (1/10/2024 12:40 PM IDT)
  • Todd Will (2/10/2024 1:09 AM IDT)
  • Oscar Volpatti (2/10/2024 1:52 AM IDT)
  • Karl Mahlburg (2/10/2024 2:56 AM IDT)
  • Divy soni (2/10/2024 2:59 PM IDT)
  • *Steffen Wolf (2/10/2024 6:36 PM IDT)
  • Blaine Hill (2/10/2024 10:20 PM IDT)
  • Motty Porat (3/10/2024 11:57 PM IDT)
  • Danylo Maksymov (5/10/2024 3:28 AM IDT)
  • Maths ForFun2 (6/10/2024 3:20 AM IDT)
  • Pierre Parquier (3/11/2024 10:33 AM IDT)

Related posts