A Compiler for Deep Neural Network Accelerators to Generate Optimized Code for a Wide Range of Data Parameters from a Hand-crafted Computation KernelEri OgawaKazuaki Ishizakiet al.2019COOL CHIPS 2019
Data Subsetting: A Data-Centric Approach to Approximate ComputingYounghoon KimSwagath Venkataramaniet al.2019DATE 2019
A Scalable Multi-TeraOPS Core for AI Training and InferenceSunil ShuklaBruce Fleischeret al.2018IEEE SSC-L
A Scalable Multi-TeraOPS Deep Learning Processor Core for AI Trainina and InferenceBruce FleischerSunil Shuklaet al.2018VLSI Circuits 2018
DyHard-DNN: Even more DNN acceleration with dynamic hardware reconfigurationMateja PuticAlper Buyuktosunogluet al.2018DAC 2018
Compensated-DNN: Energy efficient low-precision deep neural networks by compensating quantization errorsShubham JainSwagath Venkataramaniet al.2018DAC 2018
Exploiting approximate computing for deep learning accelerationChia-Yu ChenJungwook Choiet al.2018DATE 2018
POSTER: Design Space Exploration for Performance Optimization of Deep Neural Networks on Shared Memory AcceleratorsSwagath VenkataramaniJungwook Choiet al.2017PACT 2017
Scaledeep: A scalable compute architecture for learning and evaluating deep networksSwagath VenkataramaniAshish Ranjanet al.2017ISCA 2017
24 Feb 2025US12236338Single Function To Perform Combined Matrix Multiplication And Bias Add Operations
11 Nov 2024US12141513Method To Map Convolutional Layers Of Deep Neural Network On A Plurality Of Processing Elements With Simd Execution Units, Private Memories, And Connected As A 2d Systolic Processor Array
30 Apr 2024TWI840790Single Function To Perform Combined Matrix Multiplication And Bias Add Operations
21 Apr 2024JP7477249System-aware Selective Quantization For Performance Optimized Distributed Deep Learning