R. Ghez, M.B. Small
JES
A generalized recursive algorithm valid for both the Eand Hwave scattering of densely packed scatterers in two dimensions is derived. This is unlike previously derived recursive algorithms which have been found to be valid only for Epolarized waves [l]-[7]. In this generalized recursive algorithm, a scatterer is first divided into N subscatterers. The n-subscatterer solution is then used to solve the (n + n')-subscatterer solution. The computational complexity of such an algorithm is found to be of O(N2) in two dimensions, and mean-while, providing a solution valid for all angles of incidence. This is better than the method of moments with Gaussian elimination which has an O(N3) complexity. © 1992 IEEE
R. Ghez, M.B. Small
JES
M. Hargrove, S.W. Crowder, et al.
IEDM 1998
L.K. Wang, A. Acovic, et al.
MRS Spring Meeting 1993
Michiel Sprik
Journal of Physics Condensed Matter