Control Flow Operators in PyTorch
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Knowledge Base Question Answering (KBQA) is a task where existing techniques have faced significant challenges, such as the need for complex question understanding, reasoning, and large training datasets. In this work, we demonstrate Deep Thinking Question Answering (DTQA), a semantic parsing and reasoning-based KBQA system. DTQA (1) integrates multiple, reusable modules that are trained specifically for their individual tasks (e.g. semantic parsing, entity linking, and relationship linking), eliminating the need for end-to-end KBQA training data; (2) leverages semantic parsing and a reasoner for improved question understanding. DTQA is a system of systems that achieves state-of-the-art performance on two popular KBQA datasets.
Yidi Wu, Thomas Bohnstingl, et al.
ICML 2025
Robert Farrell, Rajarshi Das, et al.
AAAI-SS 2010
Chen-chia Chang, Wan-hsuan Lin, et al.
ICML 2025
Gang Liu, Michael Sun, et al.
ICLR 2025