Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
In our project we are developing a technique to detect traffic anomalies based on network flow behavior. We estimate baseline distributions for meaningful traffic features and derive measures of legitimate deviations thereof. Observed network behavior is then compared to the baseline behavior by means of a symmetrized version of the Kullback-Leibler divergence. The achieved dimension reduction enables effective outlier detection to flag deviations from the legitimate behavior with high precision. Our technique supports online training and provides enough information to efficiently classify observed anomalies and allows in-depth analysis on demand. First measurements confirm its resilience to seasonal effects while detecting abnormal behavior reliably.
Erich P. Stuntebeck, John S. Davis II, et al.
HotMobile 2008
Pradip Bose
VTS 1998
Raymond Wu, Jie Lu
ITA Conference 2007
Ehud Altman, Kenneth R. Brown, et al.
PRX Quantum