B. Wagle
EJOR
A method is presented to approximate optimally an n-dimensional discrete probability distribution by a product of second-order distributions, or the distribution of the first-order tree dependence. The problem is to find an optimum set of n - 1 first order dependence relationship among the n variables. It is shown that the procedure derived in this paper yields an approximation of a minimum difference in information. It is further shown that when this procedure is applied to empirical observations from an unknown distribution of tree dependence, the procedure is the maximum-likelihood estimate of the distribution. © 1968 IEEE. All rights reserved.
B. Wagle
EJOR
Maciel Zortea, Miguel Paredes, et al.
IGARSS 2021
Bowen Zhou, Bing Xiang, et al.
SSST 2008
David S. Kung
DAC 1998