Lerong Cheng, Jinjun Xiong, et al.
ASP-DAC 2008
We consider the vehicle routing problem with stochastic demands (VRPSD). We give randomized approximation algorithms achieving approximation guarantees of 1+α for split-delivery VRPSD, and 2+α for unsplit-delivery VRPSD; here α is the best approximation guarantee for the traveling salesman problem. These bounds match the best known for even the respective deterministic problems [Altinkemer, K., B. Gavish. 1987. Heuristics for unequal weight delivery problems with a fixed error guarantee. Oper. Res. Lett. 6(4) 149-158; Altinkemer, K., B. Gavish. 1990. Heuristics for delivery problems with constant error guarantees. Transportation Res. 24(4) 294-297]. We also show that the "cyclic heuristic" for split-delivery VRPSD achieves a constant approximation ratio, as conjectured in Bertsimas [Bertsimas, D. J. 1992. A vehicle routing problem with stochastic demand. Oper. Res. 40(3) 574-585]. © 2012 INFORMS.
Lerong Cheng, Jinjun Xiong, et al.
ASP-DAC 2008
Elliot Linzer, M. Vetterli
Computing
Yigal Hoffner, Simon Field, et al.
EDOC 2004
Alfonso P. Cardenas, Larry F. Bowman, et al.
ACM Annual Conference 1975