R.D. Murphy, R.O. Watts
Journal of Low Temperature Physics
Results are presented that demonstrate the effectiveness of a calculational method of electronic-structure theory. The method combines the power (tractable basis-set size) and flexibility (transition and first-row elements) of the augmented-plane-wave method with the computational efficiency of the Car-Parrinello method of molecular dynamics and total-energy minimization. Equilibrium geometry and vibrational frequencies in agreement with experiment are presented for Si, to demonstrate agreement with existing methods and for Cu, N2, and H2O to demonstrate the broader applicability of the approach. © 1990 The American Physical Society.
R.D. Murphy, R.O. Watts
Journal of Low Temperature Physics
Shu-Jen Han, Dharmendar Reddy, et al.
ACS Nano
Kafai Lai, Alan E. Rosenbluth, et al.
SPIE Advanced Lithography 2007
P. Martensson, R.M. Feenstra
Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films