Daniel J. Coady, Amanda C. Engler, et al.
ACS Macro Letters
The surface band gap of the Ge (111) c (2×8) surface at low temperature is determined on the basis of scanning tunneling spectroscopy. Electrostatic potential computations permit evaluation of tip-induced band bending, from which a correction to the energy scale of the observed spectra is made. Parameter values in the computations are constrained by comparison of the observed spectrum with known spectral features, including high-lying conduction band features derived from first-principles computations. The surface band gap, lying between the bulk valence band maximum and the minimum of an adatom-induced surface band, is found to have a width of 0.49±0.03 eV. © 2006 The American Physical Society.
Daniel J. Coady, Amanda C. Engler, et al.
ACS Macro Letters
A.B. McLean, R.H. Williams
Journal of Physics C: Solid State Physics
Douglass S. Kalika, David W. Giles, et al.
Journal of Rheology
Heinz Schmid, Hans Biebuyck, et al.
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures