Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
Bayesian Optimization (BO) in its classical form is cost-unaware. However, many real-world problems are resource-constrained and hence incur a cost whenever such resources are needed, such as when a new setup is used. We are then looking at adapted cost-aware solution methods that are improving the performance of BO over cost-constrained problems. We find that parameter-free algorithms can yield comparable results to fine-tuned algorithms used in constrained optimization
Pavel Klavík, A. Cristiano I. Malossi, et al.
Philos. Trans. R. Soc. A
Erik Altman, Jovan Blanusa, et al.
NeurIPS 2023
Conrad Albrecht, Jannik Schneider, et al.
CVPR 2025
Miao Guo, Yong Tao Pei, et al.
WCITS 2011