Lawrence Suchow, Norman R. Stemple
JES
Energy-Dispersive X-Ray Spectroscopy (EDS) is a technique frequently used in Scanning and Transmission Electron Microscopes to study the elemental composition of a sample. Briefly, high energy electrons of the incident electron beam may ionize an electron from a core shell. The decay of this excited state may result in the emission of a characteristic X-ray photon or Auger-Meitner electron. A solid-state EDS detector captures the X-ray photon and determines its energy. The energy spectrum thus contains information on the elemental make-up of the sample. Low Energy Electron Microscopy (LEEM) typically utilizes incident electrons with energies in the range 0–100 eV, insufficient for the generation of elemental X-rays. In general, LEEM does therefore not allow for elemental characterization of the sample under study. Here we show how relatively simple modifications and additions to the LEEM instrument make in-situ EDS spectroscopy possible, and how high-quality EDS spectra can be obtained, thus enabling elemental analysis in LEEM instruments for the first time.
Lawrence Suchow, Norman R. Stemple
JES
J.H. Stathis, R. Bolam, et al.
INFOS 2005
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
J. Tersoff
Applied Surface Science