Channel coding considerations for wireless LANs
Daniel J. Costello Jr., Pierre R. Chevillat, et al.
ISIT 1997
There is an error in our paper "An Approximation Algorithm for Minimum-Cost Vertex-Connectivity Problems" (Algorithmica (1997), 18:21-43). In that paper we considered the following problem: given an undirected graph and values rij for each pair of vertices i and j, find a minimum-cost set of edges such that there are rij vertex-disjoint paths between vertices i and j. We gave approximation algorithms for two special cases of this problem. Our algorithms rely on a primal-dual approach which has led to approximation algorithms for many edge-connectivity problems. The algorithms work in a series of stages; in each stage an augmentation subroutine augments the connectivity of the current solution. The error is in a lemma for the proof of the performance guarantee of the augmentation subroutine. In the case rij = k for all i, j, we described a polynomial-time algorithm that claimed to output a solution of cost no more than 2H(k) times optimal, where H(n) = 1 + 1/2 + ... + 1/n. This result is erroneous. We describe an example where our primal-dual augmentation subroutine, when augmenting a k-vertex connected graph to a (k + l)-vertex connected graph, gives solutions that are a factor Ω(k) away from the minimum. In the case rij ∈ {0, 1,2} for all i, j, we gave a polynomial-time algorithm which outputs a solution of cost no more than three times the optimal. In this case we prove that the statement in the lemma that was erroneous for the k-vertex connected case does hold, and that the algorithm performs as claimed.
Daniel J. Costello Jr., Pierre R. Chevillat, et al.
ISIT 1997
Imran Nasim, Michael E. Henderson
Mathematics
Y.Y. Li, K.S. Leung, et al.
J Combin Optim
Naga Ayachitula, Melissa Buco, et al.
SCC 2007