Publication
SIAM Review
Paper

Euclidean distance geometry and applications

View publication

Abstract

Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consist of an incomplete set of distances and the output is a set of points in Euclidean space realizing those given distances. We survey the theory of Euclidean distance geometry and its most important applications, with special emphasis on molecular conformation problems. © 2014 Society for Industrial and Applied Mathematics.

Date

Publication

SIAM Review

Share