Heng Cao, Haifeng Xi, et al.
WSC 2003
If X is a compact, zero-dimensional group and T is an expansive, transitive automorphism then (X, T) is shown to be topologically conjugate to a full shift on finitely many symbols. The problem of classifying such automorphisms up to simultaneous algebraic isomorphism and topological conjugacy is discussed but not solved. It is proved that for any entropy there are only finitely many such equivalence classes. When the entropy is log p for a prime p, there is only one equivalence class. All are then equivalent to [omitted formula]. © 1987, Foundation for Environmental Conservation. All rights reserved.
Heng Cao, Haifeng Xi, et al.
WSC 2003
Yi Zhou, Parikshit Ram, et al.
ICLR 2023
A.R. Gourlay, G. Kaye, et al.
Proceedings of SPIE 1989
Y.Y. Li, K.S. Leung, et al.
J Combin Optim