Yuanbin Zhang, Yan Han, et al.
JACS
2D materials possess many interesting properties, and have shown great application potentials. In this work, the development of humidity-responsive, 2D plasmonic nanostructures with switchable chromogenic properties upon wetting–dewetting transitions is reported. By exploiting DNA hybridization-directed anchoring of gold nanoparticles (AuNPs) on substrates, a series of single-nanoparticle-layer (SNL) plasmonic films is fabricated. Due to the collective plasmonic responses in SNL, these ultrathin 2D films display rapid and reversible red-blue color change upon the wetting–dewetting transition, suggesting that hydration-induced microscopic plasmonic coupling between AuNPs is replicated in the macroscopic, centimeter-scale films. It is also found that hydration finely tunes the electric field distribution between AuNPs in the SNL film, based on which responsive surface-enhanced Raman scattering substrates with spatially homogeneous hot spots are developed. Thus it is expected that DNA-mediated 2D SNL structures open new avenues for designing miniaturized plasmonic nanodevices with various applications.
Yuanbin Zhang, Yan Han, et al.
JACS
Binquan Luan, Guangxue Xu, et al.
JACS
Motilal Mathesh, Binquan Luan, et al.
ACS Catalysis
Jing Li, Binquan Luan, et al.
IRPS 2012