Sankar Basu
Journal of the Franklin Institute
Let A=(aij) be a real symmetric matrix of order n. We characterize all nonnegative vectors x=(x1,...,xn) and y=(y1,...,yn) such that any real symmetric matrix B=(bij), with bij=aij, i≠jhas its eigenvalues in the union of the intervals [bij-yi, bij+ xi]. Moreover, given such a set of intervals, we derive better bounds for the eigenvalues of B using the 2n quantities {bii-y, bii+xi}, i=1,..., n. © 1981.
Sankar Basu
Journal of the Franklin Institute
Yi Zhou, Parikshit Ram, et al.
ICLR 2023
David L. Shealy, John A. Hoffnagle
SPIE Optical Engineering + Applications 2007
Martin Charles Golumbic, Renu C. Laskar
Discrete Applied Mathematics