Simeon Furrer, Dirk Dahlhaus
ISIT 2005
Let A=(aij) be a real symmetric matrix of order n. We characterize all nonnegative vectors x=(x1,...,xn) and y=(y1,...,yn) such that any real symmetric matrix B=(bij), with bij=aij, i≠jhas its eigenvalues in the union of the intervals [bij-yi, bij+ xi]. Moreover, given such a set of intervals, we derive better bounds for the eigenvalues of B using the 2n quantities {bii-y, bii+xi}, i=1,..., n. © 1981.
Simeon Furrer, Dirk Dahlhaus
ISIT 2005
Ruixiong Tian, Zhe Xiang, et al.
Qinghua Daxue Xuebao/Journal of Tsinghua University
Paul J. Steinhardt, P. Chaudhari
Journal of Computational Physics
Richard M. Karp, Raymond E. Miller
Journal of Computer and System Sciences