Convergence properties of multi-dimensional stack filters
Peter Wendt
Electronic Imaging: Advanced Devices and Systems 1990
We consider the set multicover problem in geometric settings. Given a set of points P and a collection of geometric shapes (or sets) F, we wish to find a minimum cardinality subset of F such that each point p ∈ P is covered by (contained in) at least d(p) sets. Here, d(p) is an integer demand (requirement) for p. When the demands d(p) = 1 for all p, this is the standard set cover problem. The set cover problem in geometric settings admits an approximation ratio that is better than that for the general version. In this article, we show that similar improvements can be obtained for the multicover problem as well. In particular, we obtain an O(log opt) approximation for set systems of bounded VC-dimension, and an O(1) approximation for covering points by half-spaces in three dimensions and for some other classes of shapes. © 2012 ACM.
Peter Wendt
Electronic Imaging: Advanced Devices and Systems 1990
Ligang Lu, Jack L. Kouloheris
IS&T/SPIE Electronic Imaging 2002
Robert F. Gordon, Edward A. MacNair, et al.
WSC 1985
Juliann Opitz, Robert D. Allen, et al.
Microlithography 1998