Investigations of silicon nano-crystal floating gate memories
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
Colloidal semiconductor quantum structures allow controlling the strong confinement of charge carriers through material composition and geometry. Besides being a unique platform to study fundamental effects, these materials attracted considerable interest due to their potential in opto-electronic and quantum communication applications. Heteronanostructures like CdSe/CdS offer new prospects to tailor their optical properties as they take advantage of a small conduction band offset allowing tunability of the electron delocalization from type-I toward quasitype-II. Here, we report on a detailed study of the exciton recombination dynamics in CdSe/CdS heterorods. We observed a clear size-dependent radiative lifetime, which can be linked to the different degree of electron wave function (de)localization. Moreover, by increasing the temperature from 70 to 300 K, we observed a considerable increase of the radiative lifetime, clearly demonstrating a reduction of the conduction band offset at higher temperatures. Understanding and controlling electron delocalization in such heterostructures will be pivotal for realizing efficient and low-cost photonic devices. © 2011 American Chemical Society.
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
Douglass S. Kalika, David W. Giles, et al.
Journal of Rheology
Ronald Troutman
Synthetic Metals
A. Reisman, M. Berkenblit, et al.
JES