Diverse few-shot text classification with multiple metrics
Mo Yu, Xiaoxiao Guo, et al.
NAACL 2018
Reinforcement learning (RL) is a promising new approach for automatically developing effective policies for real-time self-* management. RL has the potential to achieve superior performance to traditional methods while requiring less built-in domain knowledge. Several case studies from real and simulated systems-management applications demonstrate RL's promises and challenges. These studies show that standard online RL can learn effective policies in feasible training times. Moreover, a Hybrid RL approach can profit from any knowledge contained in an existing policy by training on the policy's observable behavior without needing to interface directly to such knowledge. © 2007 IEEE.
Mo Yu, Xiaoxiao Guo, et al.
NAACL 2018
Gerald Tesauro, V.T. Rajan, et al.
UAI 2010
Gerald Tesauro
Machine Learning
Kilian Q. Weinberger, Gerald Tesauro
AISTATS 2007