Investigations of silicon nano-crystal floating gate memories
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
Evaluating a fractal curve’s “approximate length” by walking a compass defines a “compass exponent.” Long ago, I showed that for a self-similar curve (e.g., a model of coastline), the compass exponent coincides with all the other forms of the fractal dimension, e.g., the similarity, box or mass dimensions. Now walk a compass along a self-affine curve, such as a scalar Brownian record BH(t). It will be shown that a full description in terms of fractal dimension is complex. Each version of dimension has a local and a global value, separated by a crossover. First finding: The basic methods of evaluating the global fractal dimension yield 1: globally, a self-affine fractal behaves as it if were not fractal. Second finding: the box and mass dimensions are 1.5, but the compass dimension is D = 2. More generally, for a fractional Bownian record BH(t). (e.g., a model of vertical cuts of relief), the global fractal dimensions are 1, several local fractal dimensions are 2-H, and the compass dimension is 1/H. This l/H is the fractal dimension of a self-similar fractal trail, whose definition was already implicit in the definition of the record of BH(t). © 1985 IOP Publishing Ltd.
Arvind Kumar, Jeffrey J. Welser, et al.
MRS Spring 2000
Shiyi Chen, Daniel Martínez, et al.
Physics of Fluids
Douglass S. Kalika, David W. Giles, et al.
Journal of Rheology
K.A. Chao
Physical Review B