Publication
ASRU 2009
Conference paper

Syntactic features for arabic speech recognition

View publication

Abstract

We report word error rate improvements with syntactic features using a neural probabilistic language model through N-best re-scoring. The syntactic features we use include exposed head words and their non-terminal labels both before and after the predicted word. Neural network LMs generalize better to unseen events by modeling words and other context features in continuous space. They are suitable for incorporating many different types of features, including syntactic features, where there is no pre-defined back-off order. We choose an Nbest re-scoring framework to be able to take full advantage of the complete parse tree of the entire sentence. Using syntactic features, along with morphological features, improves the word error rate (WER) by up to 5.5% relative, from 9.4% to 8.6%, on the latest GALE evaluation test set. © 2009 IEEE.

Date

Publication

ASRU 2009