Publication
MRS Fall Meeting 1996
Conference paper

Toughened, inorganic-organic hybrid materials for microelectronic application

Abstract

Transparent, nanophase-separated, inorganic-organic hybrid polymers with dielectric constants below 3.0 have been prepared from reactively functionalized poly(amic ester) derivatives and substituted, oligomeric silsesquioxanes. These hybrid materials are stable to 400 °C and above and form tough, crack-free films. Induced cracking and crack propagation studies performed with the application of external stress suggest a maximum critical film thickness of at least 2.0 μm under severe stress conditions. These hybrid materials appear to be significantly toughened by the chemical incorporation of the polyimides relative to organically modified silicates and spin-on-glasses without significantly effecting other important polymer properties of the silicates.