A Discrete Multitone Wireline Transceiver Datapath With On-Chip Sign-Sign LMS Adaptation and Loading Profile Optimization on RFSoC
Abstract
This brief presents a discrete multi-tone (DMT) wireline transceiver (TRX) datapath and introduces the RFSoC-based real-time hardware platform to quickly sweep the optimum bit and power loading profile constrained by the peak-to-average-power ratio (PAPR). The datapath is implemented based on 32-parallel multi-path delay feedback (MDF) fast Fourier transform (FFT)/inverse FFT (IFFT) processors to save resources, integrating with the sign-sign least mean square (SS-LMS) engine. The loading is computed for the channel signal-to-noise ratio (SNR) and PAPR. The platform consists of 2.048 GS/s data converters, the DMT datapath implemented on programmable logic (PL) running at 64 MHz, and the channel board. This system enables a quick bit-error-rate (BER) test at an order of 1.0E-9, accelerating the finding of optimal loading with realistic hardware effects and random clipping events. Experimental results show that the data rate could reach a maximum of 6.82 Gb/s at a BER of 5.7E-4 and a minimum BER of 3.7E-7 for a target data rate of 4.81 Gb/s with a channel exhibiting 16.3 dB insertion loss (IL) at Nyquist.