Shu-Jen Han, Dharmendar Reddy, et al.
ACS Nano
Epitaxial silicon has been grown on Si (100) wafers using SiH4in a rapid thermal chemical vapor deposition reactor in the temperature regime from 450–700 °C. Gas analysis during growth and thermal desorption spectra (TDS) after growth were measured with a differentially pumped mass spectrometer. We have attempted to estimate the surface population of hydrogen during epitaxial growth by “freezing out” the surface hydrogen with a rapid cool down and pump down followed by a temperature programmed desorption taken in the reactor. SiH is found as the majority species in equilibrium during growth, with the surface population decreasing from one monolayer around 550–600 °C, at a pressure of three mTorr SiH4. Molecular hydrogen does not interfere with silane adsorption in this pressure regime. © 1990, American Vacuum Society. All rights reserved.
Shu-Jen Han, Dharmendar Reddy, et al.
ACS Nano
Kafai Lai, Alan E. Rosenbluth, et al.
SPIE Advanced Lithography 2007
E. Babich, J. Paraszczak, et al.
Microelectronic Engineering
Biancun Xie, Madhavan Swaminathan, et al.
EMC 2011