Terrence R. Scott, Alan J. Hoffman
IEEE Transactions on Circuits and Systems
This paper exploits and extends results of Edmonds, Cunningham, Cruse and McDiarmid on matroid intersections. Let r 1 and r 2 be rank functions of two matroids defined on the same set E. For every S ⊂E, let r 12(S) be the largest cardinality of a subset of S independent in both matroids, 0≦k≦r 12(E)-1. It is shown that, if c is nonnegative and integral, there is a y: 2 E →Z + which maximizes {Mathematical expression} and {Mathematical expression}, subject to y≧0, ∀j∈E, {Mathematical expression}. © 1981 Akadémiai Kiadó.
Terrence R. Scott, Alan J. Hoffman
IEEE Transactions on Circuits and Systems
Heinz Gröflin, Thomas M. Liebling
Mathematical Programming
Alan J. Hoffman, Carl W. Lee
Discrete and Computational Geometry
Alan J. Hoffman, Arthur F. Veinott Jr.
Mathematical Programming