Analog AI as a Service: A Cloud Platform for In-Memory ComputingKaoutar El MaghraouiKim Tranet al.2024SSE 2024
In-Memory Compute Chips with Carbon-based Projected Phase-Change Memory DevicesG.S. SyedK. Brewet al.2023IEDM 2023
Gradient descent-based programming of analog in-memory computing coresJulian BuchelA. Vasilopouloset al.2022IEDM 2022
NETWORK INSENSITIVITY TO PARAMETER NOISE VIA ADVERSARIAL REGULARIZATIONJulian BüchelFynn Faberet al.2022ICLR 2022
Design of Analog-AI Hardware Accelerators for Transformer-based Language Models (Invited)Geoffrey BurrSidney Tsaiet al.2023IEDM 2023
AIHWKIT-Lightning: A Scalable HW-Aware Training Toolkit for Analog In-Memory ComputingJulian BüchelWilliam Simonet al.2024NeurIPS 2024
A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inferenceManuel Le GalloRiduan Khaddam-Aljamehet al.2023Nature Electronics
Improving the Accuracy of Analog-Based In-Memory Computing Accelerators Post-TrainingCorey Liam LammieA. Vasilopouloset al.2024ISCAS 2024
Using the IBM Analog In-Memory Hardware Acceleration Kit for Neural Network Training and InferenceManuel Le GalloCorey Liam Lammieet al.2023APL Mach. Learn.
Exploiting the State Dependency of Conductance Variations in Memristive Devices for Accurate In-Memory ComputingAthanasios VasilopoulosJulian Buchelet al.2023IEEE T-ED