Publication
ASYNC 1998
Conference paper

Asynchronous circuits and systems in superconducting RSFQ digital technology

View publication

Abstract

Superconductive Rapid Single Flux Quantum (RSFQ) logic and memory, in which ones and zeros are represented by the presence or absence within a timing window of quantized picosecond voltage pulse (int/v(t)dt=h/2e=2.07 mV·ps), corresponding to one SFQ, can be integrated into a digital computing system with an operating rate of several tens of GHz, based on the present Nb Josephson junction integrated circuit technology. It is the most promising technology beyond semiconductor transistors for low-power high-end computation. However, as the operating speed of circuits and systems increase, timing uncertainty from fabrication process variations makes global synchronization very hard. In this paper, we present a globally asynchronous, locally synchronous timing methodology for RSFQ digital design, which can solve the global synchronization problem. We also demonstrate the recent experimental results of some asynchronous circuits and systems implemented in RSFQ technology. Several key components such as a self-timed shift register, a self-timed demultiplexor, a Muller-C element, a completion detector, and a clock generator have been designed and tested. High speed operation has been confirmed up to 20 Gb/s for a prototype data buffer system, which consists two self-timed shift registers and an on-chip 5-38 GHz clock generator.

Date

Publication

ASYNC 1998