Robert F. Gordon, Edward A. MacNair, et al.
WSC 1985
Let A be a normal matrix with eigenvalues λ1, λ2,..., λn, and let G{cyrillic} denote the smallest disc containing these eigenvalues. We give some inequalities relating the center and radius of G{cyrillic} to the entries in A. When applied to Hermitian matrices our results give lower bounds on the spread maxij(λi - λj) of A. When applied to positive definite Hermitian matrices they give lower bounds on the Kantorovich ratio maxij(λi - λj)/(λi + λj). © 1994.
Robert F. Gordon, Edward A. MacNair, et al.
WSC 1985
Sonia Cafieri, Jon Lee, et al.
Journal of Global Optimization
Richard M. Karp, Raymond E. Miller
Journal of Computer and System Sciences
Karthik Visweswariah, Sanjeev Kulkarni, et al.
IEEE International Symposium on Information Theory - Proceedings