William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010
The integral transform, F( mu , nu )= integral -infinityinfinity D( eta mu , eta + nu ) exp(i mu eta 2)d eta applied to functions D(x, y) on the plane, arises when one applies tomographic reconstruction techniques to problems in radar detection. The authors show that this transform can be inverted to reconstruct the superposition D+D composed with A, where A is a fixed linear transformation of the plane. In the case relevant to applications, where D(x, y) is real valued and vanishes on the half plane x<0, D itself can be reconstructed.
William Hinsberg, Joy Cheng, et al.
SPIE Advanced Lithography 2010
M.B. Small, R.M. Potemski
Proceedings of SPIE 1989
T. Graham, A. Afzali, et al.
Microlithography 2000
Leo Liberti, James Ostrowski
Journal of Global Optimization