Guo-Jun Qi, Charu Aggarwal, et al.
IEEE TPAMI
The integral transform, F( mu , nu )= integral -infinityinfinity D( eta mu , eta + nu ) exp(i mu eta 2)d eta applied to functions D(x, y) on the plane, arises when one applies tomographic reconstruction techniques to problems in radar detection. The authors show that this transform can be inverted to reconstruct the superposition D+D composed with A, where A is a fixed linear transformation of the plane. In the case relevant to applications, where D(x, y) is real valued and vanishes on the half plane x<0, D itself can be reconstructed.
Guo-Jun Qi, Charu Aggarwal, et al.
IEEE TPAMI
Igor Devetak, Andreas Winter
ISIT 2003
F.M. Schellenberg, M. Levenson, et al.
BACUS Symposium on Photomask Technology and Management 1991
Martin C. Gutzwiller
Physica D: Nonlinear Phenomena