D.D. Awschalom, J.-M. Halbout
Journal of Magnetism and Magnetic Materials
Wide-band code-division multiple-access direct-conversion receiver front-ends have been implemented in both 0.25-μm RF-CMOS and SiGe BiCMOS technologies. These circuits have been designed for the same application, radio architecture, and system specifications, allowing relevant comparisons to be made. The front-ends include a bypassable low-noise amplifier, a quadrature downconverter, baseband variable-gain amplifiers, and a local-oscillator frequency divider with output buffers. At 24.5 mA of total current consumption from a 2.7-3.3-V supply, the CMOS front-end has a noise figure of 5.3 dB, in-band third-order intercept point (IIP3) and second-order intercept point (IIP2) of -14 and +20.7 dBm, respectively, and out-of-band IIP3 and IIP2 of > +1.2 and +69 dBm, respectively. Compared to an SiGe front-end consuming 22 mA, the CMOS circuit has a 2-dB higher noise figure, comparable out-of-band linearity, 3-dB higher in-band IIP3, 12-dB lower in-band IIP2, and 7-dB higher LO-to-RF leakage. © 2005 IEEE.
D.D. Awschalom, J.-M. Halbout
Journal of Magnetism and Magnetic Materials
A. Gangulee, F.M. D'Heurle
Thin Solid Films
O.F. Schirmer, W. Berlinger, et al.
Solid State Communications
S.F. Fan, W.B. Yun, et al.
Proceedings of SPIE 1989