E. Babich, J. Paraszczak, et al.
Microelectronic Engineering
A mechanism for the modification of porous ultra low-k (ULK) and extreme ultra low-k (EULK) SiCOH-based materials is proposed. This is achieved by correlating film damage on a patterned structure measured by angular resolved x-ray photoelectron spectroscopy (ARXPS) with corresponding changes in reactive species radical density and ion current in the plasma measured by optical emission spectroscopy (OES), rare gas actinometry, and modeling. Line-to-line electrical leakage and capacitance data of nested line structures exposed to downstream ash plasmas suggest that other etching steps during back-end-of-the-line (BEOL) dual damascene processing are also critical for the overall modification induced to these materials. © 2007 Elsevier B.V. All rights reserved.
E. Babich, J. Paraszczak, et al.
Microelectronic Engineering
Sharee J. McNab, Richard J. Blaikie
Materials Research Society Symposium - Proceedings
William G. Van der Sluys, Alfred P. Sattelberger, et al.
Polyhedron
K.N. Tu
Materials Science and Engineering: A