Kangguo Cheng, Joseph W. Lyding
IEEE Electron Device Letters
We report an improved air spacer (AS) integration scheme to overcome problems with the conventional AS process. The new scheme is fully compatible with other emerging CMOS technology elements such as self-aligned contact (SAC) and contact over active gate (COAG). Using a fan-out3 (FO3) ring oscillator (RO) on a 10-nm FinFET platform, we experimentally demonstrate that the new AS provides 15% reduction in the effective capacitance ( . Such a reduction translates to 21% performance gain at the constant power (iso-power) or 36% power reduction at the constant performance (iso-speed). The benefits provided by AS exceed the benefits of a full CMOS node scaling from 7 to 5 nm. Clearly, AS is a viable technological element for continuing CMOS scaling.
Kangguo Cheng, Joseph W. Lyding
IEEE Electron Device Letters
G. Tsutsui, C. Durfee, et al.
VLSI Technology 2018
Tao Li, Chanro Park, et al.
ANTS 2018
Ravi Bonam, Hung-Yu Tien, et al.
SPIE Advanced Lithography 2014